The number of educational videos available on the internet on the most varied topics is rapidly increasing. These include mathematics videos that cover virtually any type of curriculum content. However, their quality as a learning resource varies greatly. As a result, it is necessary to provide teachers with tools to enable them to analyse the appropriateness of using educational videos, considering the various aspects involved. This paper describes the design, implementation and results of an educational intervention with 93 prospective primary school teachers, focussed on developing their ability to analyse the educational suitability of videos about proportionality. Preliminary analysis of the video revealed significant errors and inaccuracies in the definitions, propositions, and procedures, as well as shortcomings and inaccuracies in the arguments, and so its level of epistemic suitability is rated as medium. However, the majority of the prospective teachers rated its degree of suitability as high in almost all components. Students regard studying didactic suitability and implementing it through components and indicators as positive, believing that this activity facilitates professional reflection. However, mastering this tool requires analysing a greater number and variety of videos and further collective discussion of the results of the analyses performed by the students.

Please, cite this article as follows: Burgos, M., Beltrán-Pellicer, P., & Godino, J. D. (2020). La cuestión de la idoneidad de los vídeos educativos de matemáticas: una experiencia de análisis con futuros maestros de educación primaria | The issue of didactical suitability in mathematics educational videos: experience of analysis with prospective primary school teachers. Revista Española de Pedagogía, 78 (275), 27-49. doi: 10.22550/REP78-1-2020-07

Referencias | References

Aroza, C. J., Godino, J. D., & Beltran-Pellicer, P. (2016). Iniciacion a la innovacion e investigacion educativa mediante el analisis de la idoneidad didactica de una experiencia de enseñanza sobre proporcionalidad. Avances en Investigación e Innovación – Revista de Educación Secundaria, 6 (1), 1-29.

Azer, S. A., AlGrain, H. A., AlKhelaif, R. A., & AlEshaiwi, S. M. (2013). Evaluation of the Educational Value of YouTube Videos about Physical Examination of the Cardiovascular and Respiratory Systems. Journal of Medical Internet Research, 15 (11), e241. doi:10.2196/jmir.2728

Bartell, T. G., Webel, C., Bowen, B., & Dyson, N. (2013). Prospective teacher learning: recognizing evidence of conceptual understanding. Journal of Mathematics Teacher Education, 16 (1), 57-79.

Beltran-Pellicer, P., Giacomone, B., & Burgos, M. (2018). Online educational videos according to specific didactics: the case of mathematics. Cultura y Educación, 30 (4), 633-662.

Beltran-Pellicer, P., Godino, J. D., & Giacomone, B. (2018). Elaboracion de indicadores específicos de idoneidad didactica en probabilidad: aplicación para la reflexion sobre la practica docente. Bolema, 32 (61), 526-548

Ben-Chaim, D., Keret, Y., & Ilany, B. (2012) Ratio and proportion: Research and teaching in mathematics teachers’ education. Rotterdam: Sense Publisher.

Bergmann, J., & Sams, A. (2012). Flip your classroom. Eugene, Oregon: International Society for Technology in Education.

Berk, D., Taber, S. B., Gorowara, C. C., & Petzl, C. (2009). Developing prospective elementary teachers’ flexibility in the domain of proportional reasoning. Mathematical Thinking and Learning, 11 (3), 113-135.

Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S. (2016). Blended learning, e-learning and mobile learning in mathematics education. ZDM. Mathematics Education, 48 (5), 589-610.

Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflections and assessment on teaching practice. Eurasia Journal of Mathematics, Science & Technology Education, 13 (6), 1893-1918.

Chapman, O. (2014). Overall commentary: understanding and changing mathematics teachers. In J. J. Lo, K. R. Leatham, & L. R. Van Zoest (Eds.), Research Trends in Mathematics

Teacher Education (pp. 295-309). Dordrecht: Springer International Publishing.

Clasematicas Canal (2012, November 8). (Proporcionalidad) - Proporción Directa (1002) [Video file]. Retrieved from https://www.youtube.com/watch?v=o1Mu-lkgv-o (Consulted on 2019-04-06).

Dabbagh, B., & Kitsantas, A. (2012). Personal Learning Environments, social media, and self-regulated learning: A natural formula for connecting formal and informal learning. The Internet and Higher Education, 12 (1), 3-8.

Daniel Carreon (2017, June 27). REPARTO PROPORCIONAL-Super fácil [Video file]. Retrieved from https://www.youtube.com/watch?v=1uAbIb-McLo (Consulted on 2019-04-06).

Davis, B. (2015). The mathematics that secondary teachers (need to) know. revista española de pedagogía, 73 (261), 321-342.

Duffy, P. (2008). Engaging the YouTube Google-eyed generation: Strategies for using Web 2.0 in teaching and learning. Electronic Journal of E-learning, 6 (2), 119-130.

English, L. D. (2008). Setting an agenda for international research in mathematics education. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 3-19). New York & London: Taylor and Francis (Routledge).

Godino, J. D. (2013). Indicadores de idoneidad didáctica de procesos de ensenanza y aprendizaje de las matematicas. Cuadernos de Investigación y Formación en Educación Matemática, 11, 111-132.

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. Mathematics Education, 39 (1-2), 127-135.

Godino, J. D., Font, V., Wilhelmi, M. R., & Lurduy, O. (2011). Why is the learning of Elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77 (2), 247-265.

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiotico de los conocimientos y competencias del profesor de matematicas. Bolema, 31 (57), 90-113.

Hilton, A., & Hilton, G. (2018). Primary school teachers implementing structured mathematics interventions to promote their mathematics knowledge for teaching proportional reasoning. Journal of Mathematics Teacher Education, 22 (6), 545-574. doi: 10.1007/s10857-018-9405-7

Mason, J. (2016). Perception, interpretation and decision making: understanding gaps between competence and performance-a commentary. ZDM. Mathematics Education, 48 (1-2), 219-226.

Pino-Fan, L., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didactico-matematico del profesor. Paradigma, 36 (1), 87-109.

Ponte, J. P., & Chapman, O. (2016). Prospective mathematics teachers‘ learning and knowledge for teaching. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 275-296). New York: Routledge.

Portugal, K. O., Arruda, S. D. M., & Passos, M. M. (2018). Free-choice teaching: how YouTube presents a new kind of teacher. Revista Electrónica de Enseñanza de las Ciencias, 17 (1), 183-199.

Posadas, P., & Godino, J. D. (2017). Reflexion sobre la practica docente como estrategia formativa para desarrollar el conocimiento didactico-matematico. Didacticae, 1, 77-96. doi: 10.1344/did.2017.1.77-96

Ramirez, A. (2010). Youtube y el desarrollo de la competencia matematica. Resultados de una investigacion cuasi-experimental. Contextos Educativos, 13, 123-138.

Ruiz-Reyes, K., Contreras, J. M., Arteaga, P., & Oviedo, K. (2017). Analisis semiotico de videos tutoriales para la ensenanza de la probabilidad en educacion primaria. In J. M. Contreras, P. Arteaga, G. R. Canadas, M. M. Gea, B. Giacomone, & M. M. Lopez-Martin (Eds.), Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Retrieved from http://hdl.handle.net/10481/45382 (Consulted on 2019-07-19).

Sadler, D. R. (2013). Making competent judgments of competence. In S. Blömeke, O. Zlatkin-Troitschanskaia, C. Kuhn, & J. Fege (Eds.), Modeling and measuring competencies in higher education: Tasks and challenges (pp. 13-27). Rotterdam: Sense Publishing.

Santos, J. A. (2018). Valoración de vídeo tutoriales de matemáticas disponibles en internet. Nuevos instrumentos para el análisis de los procesos educativos (Doctoral dissertation). Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico.

Smatematico (2013, April 7). Problema de reparto proporcional [Video file]. Retrieved from https://www.youtube.com/watch?v=0Z5DejetHR8 (Consulted on 2019-04-06).

Turney, C. S. M., Robinson, D., Lee, M., & Soutar, A. (2009). Using technology to direct learning in higher education. The way forward? Active Learning in Higher Education, 10 (1), 71-83.

Tuto mate (2016, May 10). Problemas de repartos directamente proporcionales [Video file]. Retrieved from https://www.youtube.com/watch?-v=v8KN44iNPls (Consulted on 2019-04-06).

Author Biography

Maria Burgos is an Associate Lecturer in the Department of Didactic of Mathematics at the Universidad de Granada. She has a doctorate in Mathematics from the Universidad de Almeria and a master’s in Didactic of Mathematics from the Universidad de Granada. She is a member of the FQM-126 Teoria de la Educacion Matematica y Educacion Estadistica (Theory of Mathematics Education and Statistics Education) group.


Pablo Beltrán-Pellicer is a Associate Lecturer in the Didactic of Mathematics area of the Universidad de Zaragoza and a Compulsory Secondary Education and Spanish Baccalaureate Teacher at the CPI (Integrated Public School) Val de la Atalaya (Maria de Huerva, Zaragoza). He has a doctorate in Mathematics Teaching and is a member of the S36_17D Investigacion en Educacion Matematica (Mathematicas Education Research) group.


Juan D. Godino is a retired Professor of Didactics of Mathematics, Extraordinary Collaborator of the Department of Didactics of Mathematics and professor of the Doctoral Program in Education of the University of Granada. Member of the FQM-126 Group, Theory of Mathematical Education and Statistical Education. Since 1993 he has been developing the onto-semiotic approach to mathematical knowledge and instruction, a specific theoretical framework for mathematical education.


Licencia Creative Commons | Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License