Teachers’ digital competencies have become an essential aspect of training teachers to promote learning in their students that moves away from the knowledge transfer model and moves towards a talent development model. This work validates an instrument developed by the authors to evaluate the digital competency of teachers, in accordance with the current framework established by INTEF. A sample of 426 teachers was used in the validation process. These were approached through an online process. The total reliability of the instrument, estimated using Cronbach’s Alpha, is 0.98. The reliability for the dimensions on the «Knowledge» scale varies from 0.89 to 0.94 and for the «Use» scale from 0.87 to 0.92. The construct validity has been modified from an initial model with 5 factors to another with 4 factors and 4 sub-factors. The factor loads of the items with the dimension to which they belong are mainly above 0.5 and in many cases above 0.70. On the «Knowledge» scale there is only 1 weight that does not reach this value. The overall fit results for both scales show optimum results, with values lower than 3 for the normalised chi-squared index, values below 0.06 in RMSEA, and values of 0.9 in IFI and CFI. Data is also provided regarding convergent and discriminant validity that is significant and acceptable. The construct reliability for the convergent validity in all cases approaches 0.90. As for the discriminant validity, the proposed model is better than the alternatives, with small variations in the «Use» scale that will be the object of future analyses. This instrument will make it possible to evaluate teachers’ competencies and help with the planning of personalised training pathways depending on their results.

Cite this article as: Tourón, J., Martín, D., Navarro, E., Pradas, S., & Íñigo, V. (2018). Validación de constructo de un instrumento para medir la competencia digital docente de los profesores (CDD) | Construct validation of a questionnaire to measure teachers’ digital competence (TDC). Revista Española de Pedagogía, 76 (269), 25-54. doi: 10.22550/REP76-1-2018-02

Referencias | References

Álvarez Rojo, V. (2010). Evaluación de competencias en la Universidad. Material del curso «Evaluación de competencias en el proceso de enseñanza aprendizaje». Secretariado de Formación y Apoyo a la Calidad, Universidad de Granada.

American Psychological Association (1986). Standards for Educational and Psychological Testing: Six Reviews. Journal of Educational Measurement, 23, 83-98.

Bentler, P. M. (2005). EQS 6 Structural equations program manual. Encino: Multivariate Software.

Byrne, B. M. (2009). Structural Equation Modeling with AMOS (2ª Ed.). New York: Routledge.

Cardona, A. J. (2008). Formación y desarrollo profesional del docente en la sociedad del conocimiento. Madrid: Ed. Universitas.

Catell, R. B. (1964). Validity and reliability: a proposed more basic set of concepts. Journal of Educational Psychology, 55, 1-22.

Cattell, R. B. (1978). The scientific use of factor analysis. New York: Plenum.

Comisión Europea (2001). Basic indicators on the incorporation of ITC into European Education Systems: 2000-01 Annual Report. Bruselas: Eurydice.

Comisión Europea (2009). Marco estratégico Educación y Formación 2020 (ET2020). Euridyce España. Retrieved from http://www.mecd.gob.es/educacion-mecd/mc/redie-eurydice/prioridades-europeas/et2020.html

Comisión Europea (2016). Education and training. Monitor 2016. Portugal. Retrieved from https://ec.europa.eu/education/sites/education/files/monitor2016-pt_en.pdf

Cope, C. H., & Ward, P. (2002). Integrating lear‑ ning technology into classrooms: The impor‑ tance of teachers’ perceptions. Educational Technology & Society, 5 (1), 67-74.

Cronbach, L. J. (1971). Test validation. In R. L. Thorndike (Ed.), Educational Measurement(2nd Ed.), (p. 143). Washington: American Council on Education.

Cuban, L. (2001). Oversold and underused: Computers in the classroom. Cambridge, MA: Harvard University Press.

Davis, N., Preston, C., & Sahin, I. (2009). ICT teacher training: Evidence for multilevel evalua‑ tion from a national initiative. British Journal of Educational Technology, 40 (1), 35-48.

Ferrari, A. (2013). DIGCOMP: A Framework for Developing and Understanding Digital Competence in Europe. Sevilla: European Commission. Joint Research Centre. Institute for Prospective Technological Studies.

Fullan, M., & Donelly, K. (2013). Alive in the Swamp: assessing digital innovations in education. London: Nesta.

Gallego, M. J., Gámiz, V., & Gutiérrez, E. (2010). El futuro docente ante las competencias en el uso de las tecnologías de la información y comunicación para enseñar. EDUTEC, Revista Electrónica de Tecnología Educativa, 34.

Gaviria, J. L., Biencinto, M. C., & Navarro, E. (2009). Invarianza de la estructura de covarianzas de las medidas de rendimiento académico en estudios longitudinales en la transición de educación primaria a secundaria. Revista de Educación, 348, 153-173.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7ª Ed.). Essex: Pearson.

INTEF (2017). Marco de Competencia Digital. Madrid: Ministerio de Educación, Ciencia y Deportes.

Koehler, M. J., Mishra, P., & Cain, W. (2013). What Is Technological Pedagogical Content Knowledge (TPACK)? Journal of Education, 193 (3), 13-19.

Mesick, S. (1980). Test Validity and the Ethics of Assessment. American Psychologist, 35, 10121027.

Nunnally, J. C. (1978). Psychometric theory (2nd Ed.). New York: McGraw-Hill.

Nunnally, J. C., & Bernstein, I. H, (1994). Psychometric Theory (3ª Ed.). Nueva York: Mc‑ Graw-Hill.

OECD (2003). Education at a glance. OECD INDICATORS 2003. Paris: Organisation for Economic Co-operation and Development.

Parlamento Europeo y del Consejo (2006). Recomendación del Parlamento Europeo y del Consejo de 18 de diciembre de 2006 sobre las competencias clave para el aprendizaje permanente. Diario Oficial de la Unión Europea.

Sangrá, A., & González-Sanmamed, M. (2004). La transformación de las universidades a través de las TIC: Discursos y prácticas. Barcelona: Ediuoc.

Solmon, L. C., & Wiederhorn, J. A. (2000). Progress of technology in the school: 1999. Report on 27 states. Santa Monica, CA: Milken Family Foundation.

Tondeur, J., Valcke, M., & Van Braak, J. (2008). A multidimensional approach to determinants of computer use in primary education: Teacher and school characteristics. Journal of Computer Assisted Learning, 24 (6), 494-506.

Tourón, J. (2016). TPACK: un modelo para los profesores de hoy. Educación, Tecnología y Talento. Retrieved from http://www.javiertouron.es/2016/05/tpack-un-modelo-para-los-profesores-de.html (Consulted on July 18, 2017).

UNESCO (2002). Information and communication technology. A curriculum for schools and programme of teacher development. Paris: UNESCO.

UNESCO (2003). Communiqué of the ministerial roundtable on ‘Towards Knowledge Societies’. Paris: UNESCO.

UNESCO (2008). ICT competency standards for teachers: Competency standards modules. Paris: UNESCO.

Windschitl, M., & Sahl, K. (2002). Tracing teachers’ use of technology in a laptop computer school: The interplay of teacher beliefs, social dyna‑ mics, and institutional culture. American Educational Research Journal, 39 (1), 165-205.

Author Biography

Javier Tourón is a professor and the vice-rector for Innovation and Educational Development at the Universidad Internacional de La Rioja (UNIR). Past-President of the European Council for High Ability (2000-2004) and a member of the National Advisory Board of the Center for Talented Youth (CTY) at Johns Hopkins University (2003-2011). His research focuses on high ability and talent development; educational evaluation and educational technology.

Deborah Martin is a lecturer at the Universidad Internacional de La Rioja (UNIR). She was awarded her PhD in Education by the Complutense University of Madrid. She is Forensic and Criminology Psychologist. She is a member of the Adaptive Pedagogy research group at the Complutense, and the Flipped Mastery Learning in Online Settings and Secondary Evaluation and Analysis of the Educational System research groups at the Universidad Internacional de La Rioja (UNIR).

Enrique Navarro Asencio is an assistant professor at the Complutense University of Madrid (UCM). He was awarded his PhD in Pedagogy by the Complutense in 2013, and received the special PhD prize. His work relates to psychometry and evaluating academic performance and associated factors. Silvia Pradas is a lecturer and the director of the Master’s in Neuropsychology and Education, and of the Master’s in Educational Technology and Digital Competencies at the Universidad Internacional de La Rioja (UNIR). Her PhD in Educational Sciences was awarded by Camilo José Cela University (UCJC). Her research focusses on neuropsychology and technology applied to education.

Victoria Íñigo is an assistant professor at the Universidad Internacional de La Rioja (UNIR) and is the director of the Master’s in Teacher Training in the Faculty of Education at the UNIR. Her PhD is from the University of La Rioja, her current research focuses on training teachers in digital competencies and flipped classroom.

Licencia Creative Commons | Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License



Palabras clave | Keywords

constructvalidity, convergentvalidity, discriminantvalidity, onlinequestionnaires, teachers’digitalcompetence